ECL 4340
POWER SYSTEMS
Lecture 20
ECONOMIC DISPATCH, OPTIMAL POWER FLOW
Professor Kwang Y. Lee
Department of Electrical and
Computer Engineering

LAMBDA-ITERATION WITH GEN LIMITS

4

In the Lambda-iteration method the limits are taken into account when calculating $P_{Gi}(\lambda)$: if $P_{Gi}(\lambda) > P_{Gi,max}$ then $P_{Gi}(\lambda) = P_{Gi,max}$

if $P_{Gi}(\lambda) < P_{Gi,min}$ then $P_{Gi}(\lambda) = P_{Gi,min}$

4

	LAMBDA-ITERATION EXAMPL	E
Con	sider a three generator system with	
Ι	$C_1(P_{G1}) = 15 + 0.02P_{G1} = \lambda $ \$/MWh	
I	$C_2(P_{G2}) = 20 + 0.01P_{G2} = \lambda $ \$/MWh	
I	$C_3(P_{G3}) = 18 + 0.025 P_{G3} = \lambda $ \$/MWh	
and	with constraint $P_{G1} + P_{G2} + P_{G3} = 1000 \text{ MW}$	
Rew	riting as a function of λ , $P_{Gi}(\lambda)$, we have	
P	$P_{G1}(\lambda) = \frac{\lambda - 15}{0.02}$ $P_{G2}(\lambda) = \frac{\lambda - 20}{0.01}$	
P	$\theta_{\rm G3}(\lambda) = \frac{\lambda - 18}{0.025}$	5

LAMBDA-ITERATION LIMIT EXAMPLE, CONT'D

With the limits, we continue iterating until the convergence condition is satisfied. With limits the final solution of λ , is <u>24.43 \$/MWh</u> (compared to 23.53 \$/MWh without limits). The presence of limits will always cause λ to either increase or remain the same. Final solution is $P_{G1}(24.43) = 300$ MW, compared to 426 MW $P_{G2}(24.43) = 443$ MW, compared to 353 MW

compared to 221 MW

9

 $P_{G3}(24.43) = 257 \text{ MW},$

BACK OF ENVELOPE VALUES

Often times, incremental costs can be approximated by a constant value:

- \$/MWhr = fuelcost * heatrate + variable O&M
- Typical heatrate for a coal plant is 10, modern combustion turbine is 10, combined cycle plant is 7 to 8, older combustion turbine 15.
- Fuel costs (\$/MBtu) are quite variable, with current values around 1.5 for coal, 4 for natural gas, 0.5 for nuclear, probably 10 for fuel oil.
- Hydro, solar and wind costs tend to be quite low, but for these sources the fuel is free but limited.

10

12

10

.

11

IMPACT OF TRANSMISSION LOSSES

This small change then impacts the necessary conditions for an optimal economic dispatch $L(\mathbf{P}_{G},\lambda) = \sum_{i=1}^{m} C_{i}(P_{Gi}) + \lambda(P_{D} + \underline{P_{L}}(P_{G}) - \sum_{i=1}^{m} P_{Gi})$ The necessary conditions for a minimum are now $\frac{\partial L(\mathbf{P}_{G},\lambda)}{\partial P_{Gi}} = \frac{dC_{i}(P_{Gi})}{dP_{Gi}} - \lambda(1 - \frac{\partial P_{L}(P_{G})}{\partial P_{Gi}}) = 0$ $P_{D} + \underline{P_{L}}(P_{G}) - \sum_{i=1}^{m} P_{Gi} = 0$

IMPACT OF TRANSMISSION LOSSESThe condition for optimal dispatch with losses is then $L_1 \cdot IC_1(P_{G1}) = L_2 \cdot IC_2(P_{G2}) = L_m \cdot IC_m(P_{Gm}) = \lambda$ Since $L_i = \frac{1}{\left(1 - \frac{\partial P_L(P_G)}{\partial P_{Gi}}\right)}$ if increasing P_{Gi} increasesthe losses then $\frac{\partial P_L(P_G)}{\partial P_{Gi}} > 0 \rightarrow L_i > 1.0$ This makes generator *i* appear to be more expensive(i.e., it is penalized). Likewise $L_i < 1.0$ makes a generatorappear less expensive.

14

CALCULATION OF PENALTY FACTORS

Unfortunately, the analytic calculation of L_i is

somewhat involved. The problem is a small change in the generation at P_{Gi} impacts the flows and hence the losses throughout the entire system.

However, using a power flow you can approximate this function by making a small change to P_{Gi} and then seeing how the losses change:

$$\frac{\partial P_L(P_G)}{\partial P_{Gi}} \approx \frac{\Delta P_L(P_G)}{\Delta P_{Gi}} \qquad \qquad L_i \approx \frac{1}{1 - \frac{\Delta P_L(P_G)}{\Delta P_{Gi}}}$$
15

OPF, CONT'D

19

Inequality constraints

- transmission line/transformer/interface flow limits
- generator MW limits
- generator reactive power capability curves
- bus voltage magnitudes (not yet implemented in Simulator OPF)

Available Controls

- generator MW outputs
- transformer taps and phase angles

19

